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Abstract

This supplemental document provides more technical details of se-
mantic segmentation, texture mapping, plant modeling and object
replacement for other common subjects in landscape.

1 Semantic Segmentation

The first stage in our system is to segment the input point cloud
into semantically distinctive groups. This is done in two steps. The
first is to label the input into categories, such as houses or plants.
Then points labelled as houses are further refined into more de-
tailed structural classes, such as roofs or walls. We use supervised
machine learning techniques to perform these tasks.

1.1 Categorization

We define the following categories in our current implementa-
tion: houses, plants, mailboxes, street lights, waste bins, cars and
ground, which are common objects seen in a residential area. From
our scanned data, we manually label a section as the training data
set and adopt the semantic segmentation approach similar to Zhang
et al. [2010]. It should be mentioned that other alternatives such
as [Golovinskiy et al. 2009] and [Xiao and Quan 2009] can also be
applied to perform this task.

In order to deal with our point cloud data, we have made a few
changes to the original method. First, we group points into super-
points, analogues to the superpixel concept in image segmentation.
We randomly start with a seed point and group its neighbors into
a superpoint based on two thresholds: the maximum number of
points and the maximum distance between points. This process
repeats until all points are processed. In our experiments, these
two numbers are set to 100 and 0.3m, respectively. Second, we
use the Adaboost classifiers. Third, we introduce a new concept
called super-region to differentiate objects with similar superpoint
features but at different scales, such as houses and cars, cars and
waste bins, etc. We group superpoints by a region growing algo-
rithm with a threshold of the angle difference between superpoint
normals; in this way, most coplanar superpoints are grouped into
a large super-region and remaining small super-regions can be fur-
ther combined using a similar grouping method based on distance
as above-mentioned. Figure 1 shows an example. For each super-
region, we compute the following features:

• Height: the maximum height of a super-region.
• Volume: the volume of the bounding box of a super-region.
• Area: the maximum area of the bounding box of a super-

region.
• Planarity difference: the sum of difference of planarity among

adjacent superpoints in one super-region.
• Length: the length between maximum and minimum super-

point height.
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Figure 1: Grouping point clouds into superpoints and super-
regions. (left) Superpoints of a point cloud; (right) super-regions
of the point cloud.

These additional features are added to its superpoints; together with
other superpoint features as defined in [Zhang et al. 2010], the aug-
mented feature vectors are used for training. After the classification
stage, the result is further grouped into connected components, each
with its own semantic label.

1.2 Segmentation of House Point Cloud

For each point set labeled as a house, it will be further segmented
into different classes, including columns, roofs and walls. The
same segmentation method in Section 1.1 is adopted with one addi-
tional superpoint feature: surrounding emptiness, which measures
the number of points within a neighboring bounding box around
each superpoint center. The bounding box size is set to 0.5m, which
is roughly twice the size of a typical column. This feature is mainly
used to identify columns.

2 Texture Mapping

To compute texture maps for a reconstructed building model, we
first automatically find the nearby camera views that capture the
model, and then back-project the views to the planar surfaces of
the model. However, images and point clouds may not be perfectly
aligned, and a model is only approximately reconstructed. Thus,
texture maps generated from the direct back projection would pro-
duce noticeable misalignment. In order to alleviate these errors, we
propose an algorithm of content-preserving warps inspired by [Liu
et al. 2009] based on 2D-3D line correspondences. We further fuse
the multiple overlapping views using a multi-label MRF energy
minimization framework similar to [Sinha et al. 2008]. Details are
presented below.

2.1 Back-projection

As the reconstructed model M and images are geo-referenced and
the scanning trajectory is also recorded, the images capturing M
can be easily retrieved. In order to compute the texture map Tp of a
plane P in M from an image I , as P might be entirely or partially
occluded by other planes in M and/or nearby models (typically two
along the driving path), we need to perform a visibility test on P



first. We use the standard two-pass z-buffer algorithm: given the
projection matrix of I , we render M and nearby models and then
render the plane P to get the visibility estimation and the texture
map through back-projection.

2.2 Content-preserving Warps based on 2D-3D line
correspondences

The texture maps generated from the direct back projection would
produce noticeable misalignment due to the registration error and
imperfect model fitting. We propose an algorithm of content-
preserving warps to generate a distorted image I ′ where 2D edges
are better aligned with 3D lines in M . Our method is inspired
by [Liu et al. 2009], however, different from point correspondences
used in their method, we establish 2D-3D line correspondences be-
tween a model M and an image I because line features are much
more stable than point features across different modalities.

We extract a set of line segments from an image I using the LSD
algorithm [von Gioi et al. 2010]. We denote a projected 3D edge
segment of M onto an image I as lM . An image edge segment lI is
matched to the model edge segment lM if they have short distance
(less than 20 pixels), small angle (less than 15◦), similar length
(the longer one is no more than twice the length of the shorter one),
and sufficient overlapping (at least half of the shorter one can be
projected onto the other segment). In order to prune the wrong
line matches, one observation is that the larger the model plane is,
the more likely line matches can be found. Therefore, we sort the
model planes according to plane size in a descending order, and
iteratively apply robust planar homography fitting algorithm based
on RANSAC to prune wrong line matches for each model plane, so
that model edges from the large planes find their matches first, and
model edges from the small planes can be adjusted accordingly.

To refine a texture map, we synthesize a new image I ′ from an
image I where matched 2D image edges and projected 3D model
edges are co-aligned. We use the content preserving warps similar
to [Liu et al. 2009], which divides an image into a quad mesh and
compute a distorted quad mesh minimizing an energy functional
consisting of a data term and a smoothness term. Different from
their method, we encode 2D-3D line matches into the data term in-
stead of point correspondences. Our new data term ensures a line lI

to align lM by minimizing the total square of point-to-line distance
between sample points on line lI and line lM . The warped image I ′

can then be generated by a standard texture mapping algorithm ac-
cording to the distorted quad mesh. We then compute a texture map
for each model plane through the back-projection algorithm based
on the warped image I ′. As shown in Figure 2, the misalignment
artifacts can be reduced by our approach.

2.3 Multiple Texture Fusion

To fuse the texture maps for a model plane P from overlapping
camera views, we apply a multi-label MRF energy minimization
framework similar to [Sinha et al. 2008], where the data term is a
weighted sum of two terms: preference for a frontal view and pref-
erence for a camera view that has a large number of visible pixels
of P ’s projection; and the smoothness term encourages neighboring
pixels should have same labels.

3 Landscape Modeling

Given the semantic labels for the remaining points, we have de-
veloped simple and effective methods to reconstruct other objects.
These objects enrich the visual realism of the final model.

Figure 2: Comparison on two texture mapping algorithms. 1st row
shows the detected image edges (red) and projected model edges
(blue); the misalignment is obvious due to the registration error.
2nd row shows the automatically extracted correspondences be-
tween image edges (red) and model edges (blue). In 3rd row and 4th
row, the left part shows the results from the original back-projection
texture mapping where the imperfection marked by red circles are
improved by our method shown in the right part.

3.1 Plant Reconstruction

Plants, including trees and shrubberies, are integral parts of our liv-
ing environment. A number of reconstruction methods have been
developed to model trees from LiDAR data (e.g., [Livny et al.
2011], or even images (e.g., [Tan et al. 2007]). While these methods
can generate very high quality geometric tree models, we choose
to develop a fully automatic method suitable for large-scale recon-
struction. Toward this goal, we choose to adopt the light-weight
billboard representation for visually-plausible plant models. Our
plant model consists of two orthogonal planes and one billboard
image. The key is to extract from the input the billboard image and
find the tree trunk (the axis of rotation). First, we project each plant
point set onto the nearest corresponding image. A shape mask is ex-
tracted as the billboard image. The point set is also projected onto
the ground plane normal direction (i.e., the z axis) and the point
density along the z axis is measured. A sharp increase (3 times)
in density means a transition from trunk to foliage. If no trunk is
detected, the center z axis of 3D bounding box is used as the axis of
rotation. If the ratio of x and y axes of the 3D bounding box is too
big or too small, it is likely to be a shrubbery, therefore we segment
it into parts with equal length of x and y axes. We usually use a
2:1 ratio as the threshold for cutting. Another problem we have to
deal with is misalignment of images. We segment the billboard im-
ages into superpixels and cluster the superpixels into three groups
(trunk, leaf, and error) according to average chroma value of pix-



els in the image. Then the error superpixels will be automatically
replaced by randomly selected leaf superpixels. Figure 3 illustrates
the entire process.

Figure 3: Tree Reconstruction. From left to right: (a) correspond-
ing color image of point clouds; (b) point clouds with color coded
horizontal density, the dotted line shows the trunk/leaf boundary;
(c) the texture and point clouds are off by some pixels; (d) rendered
billboard tree with the corrected texture.

3.2 Model Replacement

Other frequently occurring static objects in residential landscape
such as mailboxes and street lights are often hard to directly re-
construct using simplified geometric models from the cluttered, in-
complete and noisy data. Inspired by the recent success of model
replacement applied to indoor scene modeling (e.g., [Shao et al.
2012]), we download the similar models from Google 3D Ware-
house, and use PCA to estimate global scaling and an initial pose
between the models and the recognized raw points and further align
them using iterative closest point (ICP) method; in this way, points
from a categorized object (e.g., a mailbox) are replaced by the cor-
responding model.
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